超声波清洁的原理

一、概述  

  超声波清洗的机理主要是由于在清洗液中引入了超声振动,使清洗液中产生了"空化作用"。由"空化作用"产生的强大机械力将工件上黏附的机械杂质、各种污染等剥落。超声清洗不仅仅具有空化作用,同时还伴随着较为复杂的种种物理、化学的作用。    所谓"空化作用"是指当超声波这种交变声压在液体中传播时出现稀疏密集状态。在密集状态时,液体受到正压力(约几个大气压),而在稀疏状态时,液体受到拉力即负压力,一般液体中都有含有一定的气体,在稀疏状态时气泡增长,并吸收更多的液体中分解出来的气体;而当再压缩时,气泡不断缩小,在此过程中,液体质点的运动是与逐渐减小的气泡半径成反比的。因此,当半径趋于零时,质量运动速度在理论上应趋于无穷大。如果这一快速运动在气泡闭合时突然停止,则集中在微小容积内的动能就要释放出来,部分变为热能,部分变为压缩能。此时,从闭合泡的中心向外传播一个球形冲击波。在这一点压力有数千个大气压,若超声频率为20KHz,这种空化作用也每秒种进行两万次。因此超声波具有强力清洗能力就不难理解了。  二、影响超声波清洗效果的有关因素  

  1、超声波强度。即单位面积超声功率。超声清洗的效果好坏取决于空化作用,而空化作用的产生与超声波强度有关。在通常情况下,单位面积超声功率超过0.3W/cm2(输出电功率一般大于1W)水溶液就能产生空化。在一定范围内,超声波强度越大,空化作用越明显,也就说清洗效果越好。但太高的功率密度会由于空化作用太强而引起对工件的表面侵蚀,使工件受损。另外当功率密度增加到一定程度就会出现饱和现象,清洗效果反而会下降。  

  产生空化的功率密度临界点与频率还有关系,频率越高,产生空化的功率密度越大,例如16--20KHz时,功率密度临界点大约为0.3--0.4W/cm2;26--30KHz时,功率密度就选为0.5--0.8W/cm2;30--40KHz时,功率密度应选为1--1.2W/cm2 。  

  2、超声波频率。超声波振动频率对于清洗效果有很大影响,这是由于超声波频率对于空化作用影响很大的缘故。实践证明同等功率情况下,低频时易于激发空化。即频率越低,空化作用效果越好,但噪音越大。反之,频率越高,空化作用效果越差,噪音越小。  

  3、清洗液温度。清洗的温度是影响清洗速度的重要因素,适当提高清洗液的温度,可增强空化能力,缩短清洗时间,但超过一定的温度,由于蒸汽压力相应增加反而使空化作用降低,因此必须保持一定的温度范围,如水溶剂清洗液一般在45℃左右,三氯烯清洗液在75℃左右。选择清洗液必须考虑选择的清洗液粘度要小,表面张力要小以利于清洗液的空化。   

  超声波清洗系统具备三个基本元件:清洗槽、将电能转化为机械能的换能器以及产生高频电信号的超声波发生器。

影响

超声波清洗机效果的有关因素 

1、超声波强度。即单位面积声功率。超声清洗的效果好坏取决于空化作用,而空化作用的产生与超声波强度有关。在通常情况下,单位面积声功率超过0.3W/cm 2(输出电功率一般大于1W)水溶液就能产生空化。在一定范围内,超声波强度越大,空化作用越明显,也就说清洗效果越好。但太高的功率密度会由于空化作用太强而引起对工件的表面侵蚀使制件受损。另外当功率密度增加到一定程度就会出现饱和现象,清洗效果反而会下降。   产生空化的功率密度临界点与频率还有关系,频率越高,产生空化的功率密度越大,例如16--20KHz时,功率密度临界点大约为0.3--0.4W/cm2;26--30KHz时,功率密度就选为0.5--0.8W/cm2;30--40KHz时,功率密度应选为1--1.2W/cm2 。   2、超声波频率。超声波振动频率对于清洗效果有很大影响,这是由于超声波频率对于空化作用影响很大的缘故。实践证明同等功率情况下,低频时易于激发空化。即频率越低,空化作用效果越好,但噪音越大。反之,频率越高,空化作用效果越差,噪音越小。   3、清洗液温度。清洗的温度是影响清洗速度重要因素,适当的提高清洗液的温度,可增强空化能力,缩短清洗时间,但超过一定的温度,由于蒸汽压力相应增加反而使空化作用降低,因此必须保持一定的温度范围,如水溶剂清洗液一般在45℃左右,三氯烯清洗液在75℃左右。选择清洗液必须考虑选择的清洗液粘度要小,表面张力要小以利于清洗液的空化。  

超声波选型指南 

三、非标型清洗设备的选用  1)、功率的选择 

  超声波清洗效果不一定与(功率 × 清洗时间)成正比,有时用小功率,花费很长时间也没有清除污垢。而如果功率达到一定数值,有时很快便将污垢去除。若选择功率太大,空化强度将大大增加,清洗效果是提高了,但这时使较精密的零件也产生蚀点,得不偿失,而且清洗缸底部振动板处空化严重,水点腐蚀也增大,在采用三氯乙烯等有机溶剂时,基本上没有问题,但采用水或水溶性清洗液时,易于受到水点腐蚀,如果振动板表面已受到伤痕,强功率下水底产生空化腐蚀更严重,因此要按实际使用情况选择超声功率。 2)、频率的选择 #p#分页标题#e#

 超声清洗频率从十几 kHz 到 100kHz 之间,在使用水或水清洗剂时由空穴作用引起的物理清洗力显然对低频有利,一般使用 15-40kHz 左右。对小间隙、狭缝、深孔的零件清洗,用高频(一般 40kHz 以上)较好,甚**几百 kHz 。对钟表零件清洗时,用 400kHz 。若用宽带调频清洗,效果更良好。 3)、清洗篮的使用 

 在清洗小零件物品时,常使用网篮,由于网眼要引起超声衰减,要特别引起注意。当频率为 28khz 时使用 10mm 以上的网眼为好。当然有时清洗是不是采用篮子,而是采用挂、夹等方式(如光电镜片等),是以不同工件的清洗治具也不同,要专门制作。 4)、清洗液温度的选择 

 水清洗液**适宜的清洗温度为 40-60℃ ,尤其在天冷时若清洗液温度低空化效应差,清洗效果也差。因此有部分清洗机在清洗缸外边绕上加热电热丝进行温度控制,当温度升高后空化易发生,所以清洗效果较好。当温度继续升高以后,空泡内气体压力增加,引起冲击声压下降,反应出这两因素的相乘作用。 5)、关于清洗液量的多少和清洗零件的位置的确定 一般清洗液液面高于振动子表面 100mm 以上为佳。由于单频清洗机受驻波场的影响,波节处振幅很小,波幅处振幅大造成清洗不均匀。因此**佳选择清洗物品位置应放在波幅处。 6)、超声波清洗工艺及清洗液的选择  

在购买清洗系统之前,应对被清洗件做如下应用分析: 明确被洗件的材料构成、结构和数量, 分析并明确要清除的污物,这些都是决定所要使用什么样的清洗方法,判断应用水性清洗液还是用溶剂的先决条件。**终的清洗工艺还需做清洗实验来验证。只有这样,才能提供合适的清洗系统、设计合理的清洗工序以及清洗液。考虑到清洗液的物理特性对超声清洗的影响,其中蒸汽压、表面张力、黏度以及密度应为**显着的影响因素。温度能影响这些因素,所以它也会影响空化作用的效率。 任何清洗系统必须使用清洗液。 选择清洗液时,应考虑以下三个因素:  

1 .清洗效率:选择**有效的清洗溶剂时,一定要做实验。如在现有的清洗工艺中引入超声,所使用的溶剂一般不必变更;  

2 .操作简单:所使用的液体应安全无毒、操作简单且使用寿命长;  

3 .成本:**廉价的清洗溶剂的使用成本并不一定**低。使用中必须考虑到溶剂的清洗效率、安全性、一定量的溶剂可清洗多少工件利用率**高等因素。当然,所选择的清洗溶剂必须达到清洗效果,并应与所清洗的工件材料相容。水为**普通的清洗液,故使用水基溶液的系统操作简便、使用成本低、应用广泛。然而对某些材料以及污垢等并不适用于水性溶液,那么还有许多溶剂可供选用。 主要清洗工艺流程如下: 

1) 浸洗或喷洗:目的是将工件上的污染物软化、分离、溶解,并减轻下道清洗工序的负荷。 

2)超声波清洗:利用超声波产生的强烈空化作用及振动将工件表面的污垢剥离脱落,同时还可将油脂性的污物分解、乳化, 

3)冷漂洗:利用流动的净水将已脱落但尚浮在工件表面上污物冲洗干净。  

4)超声波漂洗:溶剂为干净的清水,工件浸入后,利用超声波将浮在工件各边、角及孔隙处的污物清洗干净。 5)热净水及冷净水漂洗:进一步去除悬附在工件表面上的污物微粒。  6)热风烘干:利用一定的温度和风速,使零件表面快速干燥。 7)、不同的清洗液,要区分的清洗系统  

水性系统:通常由敞口槽组成,工件浸没其中。而复杂的系统会由多个槽组成,并配备循环过滤系统、冲淋槽、干燥槽以及其它附件。  

溶剂系统:多为超声波汽相除油脂清洗机,常配备废液连续回收装置。超声波汽相清除油脂过程是由溶剂蒸发槽和超声浸洗槽组成的集成式多槽系统完成的。在热的溶剂蒸汽和超声激荡共同作用下,油、脂、蜡以及其他溶于溶剂的污垢就被除去。经过一系列清洗工序后下料的工件发热、洁净、干燥。 8)、清洗件处理  

 超声清洗的另一个考虑因素是清洗件的上、下料或者说是放置清洗件的工装的设计。清洗件在超声清洗槽内时,无论清洗件还是清洗件篮都不得触及槽底。清洗件总的横截面积不应超过超声槽横截面积的 70% 。橡胶以及非刚化塑料会吸收超声波能量,故将此类材料用于工装时应谨慎。jue缘的清洗件也应引起特别注意。工装篮设计不当,或所盛工件太重,纵使**好的超声清洗系统的效率也会被大大降低。钩子、架子以及烧杯都可用来支持清洗件。 9)、机器工作方式 

根据每天工作时间、待清洗工件种类、待清洗工件数量、清洗溶剂种类、和投入资金来选用全自动、半自动、手动等工作方式和传动部件。